

PAP-003-1015001

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Mathematics: Paper-5(A)

(Mathematical Analysis & Group Theory)

Faculty Code: 003

Subject Code: 1015001

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instruction: All questions are compulsory.

1 (A) Answer the following questions briefly:

4

- (1) Define closed set
- (2) Give an example of a subset of metric space R which is not open and closed.
- (3) If (X, d) is a discrete metric space and $a \in X$ then $N(a, 1/3) = \dots$
- (4) Find the derived set of subset (1, 3) of metric space R.
- (B) Attempt any one out of two:

2

- (1) If (X,d) is a metric space and $A,B \subset X$ then prove that $A^0 \subset B^0$.
- (2) Obtain border set of subset (2,3) of metric space R.
- (C) Attempt any one out of two:

3

- (1) Prove that arbitrary union of open sets of a metric space is open.
- (2) Prove that every finite subset of metric space is closed set.

	(D)	Attempt any one out of two:		
		(1)	Prove that Derived set of any subset of a metric space is a closed set.	
		(2)	If (X,d) is metric space and $E \subset X$ then E is open $\Leftrightarrow X - E$ is closed.	
2	(A)	Ans	wer the following questions briefly:	4
		(1)	Define partition.	
		(2)	Define lower Riemann sum	
		(3)	If $P = \{1, 2, 5, 10\}$ then find Norm of P	
		(4)	Every constant function is Riemann Integrable. (True or False)	
	(B)	Atte	empt any one out of two:	2
		(1)	In usual notation prove that $L(P_1,F) \le U(P_2,f)$.	
		(2)	If $f(x)=x, x \in [0,1]$ and partition $P=\{0,1/3,2/3,1\}$	
		, ,	then find $U(P,f)$.	
	(C)	Atte	empt any one out of two:	3
		(1)	If f is continuous on [a,b] then prove that f is R-Integrable on [a,b].	
		(2)	If f,g are R-Integrable on [a,b] then prove that f+g is also R-Integrable.	
	(D)	Attempt any one out of two:		5
		(1)	State and prove necessary and sufficient condition for a bounded function f defined on [a,b] to be R- Integrable.	
		(2)	Find Riemann integral of $f(x)=x^2$ on [0,1] by second definition.	
3	(A)	Ans	wer the following questions briefly:	4
		(1)	Define Group	
		(2)	Define integral function	
		(3)	Define order of a group	
		(4)	State second mean value theorem of Riemann integration	
PAI	P-003	-1015	001] 2 [Cont	d

(B)	Atte	mpt any one out of two:	2
,	(1)		
	(2)	State and prove first mean value theorem.	
(C) Atter		mpt any one out of two:	
	(1)	Prove that identity element is the only idempotent element in any group.	
	(2)	Evaluate:	
		$\lim_{n\to\infty} \frac{\pi}{n} \left[\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\frac{\pi\pi}{n} \right].$	
(D)	Atte	mpt any one out of two:	5
	(1)	Prove that $\frac{\pi^2}{10} \le \int_0^{\pi} \frac{x}{3 - 2\cos x} dx \le \frac{\pi^2}{2}$.	
	(2)	State and prove fundamental theorem of integration.	
(A) Answer to		wer the following questions briefly:	4
	(1)	Define Odd permutation.	
	(2)	Define cyclic subgroup.	
	(3)	Define centre of a group.	
	(4)	Find the generators of cyclic group $(Z_5,+_5)$	
(B)	Attempt any one out of two:		
	(1)	If $\sigma = (1\ 2\ 3\ 4), \sigma \in S_5$ then find σ^{-1}	
	(2)	Check whether $(Z,+)$ is cyclic group or not.	
(C)	Atte	mpt any one out of two:	3

(C) Attempt any one out of two:

(1) Prove that intersection of two subgroups of a group is also a subgroup.

(2) Let $H \le G$ and let $a,b \in G$ then show that $aH = Ha \Leftrightarrow ab^{-1} \in H.$

4

	(D)	Attempt any one out of two:		5
		(1)	State and prove Lagrange's theorem for finite groups.	
		(2)	If H and K are any two subgroups of group G such that $(O(H,O(K)) = 1$ then show That $H \cap K = \{e\}$.	
5	(A)	Ans	wer the following questions briefly:	4
		(1)	Define factor group.	
		(2)	Define simple group.	
		(3)	Define normal subgroup	
		(4)	Every subgroup of a commutative group is normal. (True or False)	
	(B)	Atte	empt any one out of two:	2
		(1)	If H is a normal subgroup of group G with	
			i_G (H) = m then prove that $a^m \in H; \forall a \in G$.	
		(2)	If a finite group G has only one subgroup H of given order then H is a normal Subgroup of G.	
	(C)	Atte	empt any one out of two:	3
		(1)	If a subgroup H of a group G is normal subgroups of	
			group G iff $aha^{-1} \in H; \forall a \in G, \forall h \in H$.	
		(2)	Prove that a subgroup of index 2 in a group is a normal subgroup.	
	(D)	Atte	empt any one out of two:	5
		(1)	State and prove Cayley's theorem.	
		(2)	Show that $(R+,\cdot) \cong (R,+)$.	

5